Volume Integral Equation Method in Problems of

نویسنده

  • Alexander Samokhin
چکیده

Preface In our course we will consider the volume integral equations in the following form) () () () () () (x f dy y u y b y x y x K x u x a Q m = − − + ∫ , 3 ≤ m. Many important classes of the wave scattering problems can be described by equations of this form; for example, this is the case for problems of electromagnetic and acoustic scattering on 3D transparent bodies. The corresponding integral operator is compact (m=1) in acoustic problems and singular (m=3) in electromagnetic problems. Why do we want to consider integral equations though the initial problems usually are formulated as boundary value problems for partial differential equations? For that there are two main reasons. I. One of the ways for the mathematical investigation (proof of the existence and uniqueness theorems, etc.) of the initial problem of mathematical physics is the following. We reduce the initial boundary value problem to an integral equation. Then we establish the equivalence of the differential formulation of the problem and the corresponding integral equation. It means that any solution of the integral equation (maybe with some restriction on the parameters of the problem) satisfies the partial differential equations and boundary condition and back. Based on the integral inequalities which are usually obtained from the differential formulation, we prove the uniqueness theorem of our problem. Then using the theory of solvability of integral equations (Fredholm integral equation or singular integral equation theories) in appropriate (from the physical point of view) functional space we prove the existence and uniqueness theorem and others facts for the initial problem of mathematical physics. In our course we will follow these steps. II. We will construct the methods and algorithms for the numerical solution of the initial problems by using integral equations. At the first glance the partial differential equations are more appropriate for the numerical solution because after discretization we receive the system of linear algebraic equations (SLAE) with sparse matrix in comparison with the full matrix which we obtain in the integral equation case. But for the wave scattering problems the solution must satisfy the radiation condition at infinity. Therefore for the good accuracy we need to find numerically the unknown wave field in the domain which is sufficiently greater than scattering object Q and due to 3D of the initial problem the dimension of the SLAE …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

‎Solving Some Initial-Boundary Value Problems Including Non-classical ‎C‎ases of Heat Equation By Spectral and Countour Integral ‎Methods‎

In this paper, we consider some initial-boundary value problems which contain one-dimensional heat equation in non-classical case. For this problem, we can not use the classical methods such as Fourier, Laplace transformation and Fourier-Birkhoff methods. Because the eigenvalues of their spectral problems are not strictly and they are repeated or we have no eigenvalue. The presentation of the s...

متن کامل

Numerical Solution of a Free Boundary Problem from Heat Transfer by the Second Kind Chebyshev Wavelets

In this paper we reduce a free boundary problem from heat transfer to a weakly Singular Volterra  integral equation of the first kind. Since the first kind integral equation is ill posed, and an appropriate method for such ill posed problems is based on wavelets, then we apply the Chebyshev wavelets to solve the integral equation. Numerical implementation of the method is illustrated by two ben...

متن کامل

A Boundary Meshless Method for Neumann Problem

Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...

متن کامل

Solving optimal control problems with integral equations or integral equations - differential with the help of cubic B-spline scaling functions and wavelets

In this paper, a numerical method based on cubic B-spline scaling functions and wavelets for solving optimal control problems with the dynamical system of the integral equation or the differential-integral equation is discussed. The Operational matrices of derivative and integration of the product of two cubic B-spline wavelet vectors, collocation method and Gauss-Legendre integration rule for ...

متن کامل

Numerical Solution of Weakly Singular Ito-Volterra Integral Equations via Operational Matrix Method based on Euler Polynomials

Introduction Many problems which appear in different sciences such as physics, engineering, biology, applied mathematics and different branches can be modeled by using deterministic integral equations. Weakly singular integral equation is one of the principle type of integral equations which was introduced by Abel for the first time. These problems are often dependent on a noise source which a...

متن کامل

A finite difference method for the smooth solution of linear Volterra integral equations

The present paper proposes a fast numerical method for the linear Volterra integral equations withregular and weakly singular kernels having smooth solutions. This method is based on the approx-imation of the kernel, to simplify the integral operator and then discretization of the simpliedoperator using a forward dierence formula. To analyze and verify the accuracy of the method, weexamine samp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009